If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-9t=12
We move all terms to the left:
t^2-9t-(12)=0
a = 1; b = -9; c = -12;
Δ = b2-4ac
Δ = -92-4·1·(-12)
Δ = 129
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-\sqrt{129}}{2*1}=\frac{9-\sqrt{129}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+\sqrt{129}}{2*1}=\frac{9+\sqrt{129}}{2} $
| 90+(2x-2+)(x*5)=180 | | x+4x-1=34 | | -7+y/4=-27 | | (x-4)²-2=7 | | 7+4y=49 | | (n+2)=1 | | 6x-3=-37 | | (c-3)=1 | | 13=y2+5y= | | -5(-5+4n)=125 | | 15-x=228 | | 5(-2-6n)=-190 | | 〖6x〗^2+6x=36 | | (4x-1)+x=34 | | 13=y2+5 | | 3x–5=–35 | | -30=-w/4 | | 1/6(z-4)=1/3(z-2) | | 7(3n+8)=203 | | 1x+1/3=5 | | 6(x-2)-4x=20 | | -3n+5-2n=20 | | 〖3x〗^2=-9x-6 | | d+1/2=3/8 | | 42/8-3=30x | | 8(x-6)=14+48 | | $42/8-3=30x | | 115-w=176 | | 2x+120=30 | | 5n-7+2n=7 | | 6x+10=13x-39 | | 8.3x-4.4=12.2 |